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Let f(z) = Y_.7, ¢n2z™ be an entire function of order py € (0,+00), let oy and hy(6) be the
type and the indicator of the function f, respectively, let (p,,) be a sequence of positive integers
with Hadamard gaps and f;(z) = ZZO:O ePrte, 2", where t € R. Then, for almost every ¢ € R,
the equality hy,(0) = o holds for every 6 € R.

II. B. @uiesud. Hndukamop yeavx Gyrkyuts ¢ cuibio Koaebaowumucs kosdduyuernmamy //
Mar. Crynil. — 2011. — T.35, Ne2. — C.142-148.

Iycrs f(2) =Y 00 o ¢n2™ — nenas dyskius nopsiaka pr € (0,+00), o5 u hy(#) — coorser-
CTBEHHO THUII ¥ UHAUKATOP dbyHKmu f, (p,) — JakyHapHas 10 AgaMapy IOCIeI0BATEIbHOCTD
HaTypaabHbIX umcen u fi(z) = Y oo ePrte, 2™ rne t € R. Torga noutn masepHoe 1o t € R

n=0
paBeHCTBO hy, (#) = 05 BBIOIHSETCA 11t Beex O € R.

1. Introduction. For any transcendental entire function

1) =Y e M

n=0

let My (r) = max{|f(2)|: |z| = r} be the maximum modulus, and S¢(r) = (37, \cn|27"2”)%
be the mean. As usual, we define the order ps of the function f, and, in case when 0 < py <
+00, its type o and indicator hy(6) in accordance with equalities

— Inln My(r) — In My(r) — In|f(re?)]

= lim ——2~ = lim ————= hs0) = i
P 7’—1>I—Poo Inr 91 7“—1>I-|¥loo rPf ’ f( ) r—l>gloo rPf

We recall that, by the classical Hadamard formulas,

— nlnn — nle, P/
pr=lim ———, oy = lim ———.
n—o0 —ln’cn| n—oo  epf
For a set A C R by A’ we denote its complement in R: A’ = R\ A.
Let (p,) be a sequence of positive integers with Hadamard gaps, i.e. there exists a number
q > 1 such that

il ¢ (mezy). 2)
DPn
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Along with the entire function (1) we consider the function

fi(z) = Zeip"tcnz", teR. (3)
n=0
Using Hadamard’s formulas, we obtain py, = pf, 05, = o5 for all ¢ € R. Furthermore,

St,(r) = S¢(r) and, by the Parseval equality,

/0 ’ | fi(re'®)2do = 2153 (r) (t € R); /0 ' | fi(2)]?dt = 2mS3(r) (2 € C).

On the international conference on complex analysis in memory of A. A. Gol’dberg (Lviv,
2010) in a conversation with the author A. Eremenko formulated the following question: is it
true that for an entire function of the form (3) almost everywhere by t the equality hy,(0) = oy
holds for all § € R (i. e., hy(0) = 04)?

The answer to this question is positive.

Theorem 1. Let f be an entire function of the form (1) such that py € (0,400), let (p,)
be a sequence of positive integers with Hadamard gaps, and let f, be the entire function of
the form (3), and A = {t € R: hy,(0) = os}. Then A’ is a set of Lebesgue measure zero and
first Baire category in R.

It is easy to show that Theorem 1 follows from

Theorem 2. Let f be a transcendental entire function of the form (1), (p,) be a sequence
of positive integers with Hadamard gaps, f; be the entire function of the form (3), ¢ € R be
a fixed number, (ry) be a sequence increasing to +o0o, and

T |ft(7”k€i9)| }
B=<teR: 1 s >,
{ P Se(re)  —

Then B’ is a set of Lebesgue measure zero and first Baire category in R.

Using Theorem 1 and the Pélya theorem on the connection between the conjugate di-
agram and the indicator diagram of an entire function of exponential type (see for example
[1, p. 114]), we prove the following statement.

Theorem 3. Let f be an analytic function in the disk {z € C: |z| < 1}, represented by power
series (1) with the radius of convergence Ry = 1, let (p,) be a sequence of positive integers
with Hadamard gaps, and let C' be the set of all t € R such that the circle {z € C: |z]| = 1}
is the natural boundary for the function (3). Then C’" is a set of Lebesgue measure zero and
first Baire category in R.

Note that the entire functions of the form (3) was introduced by J. M. Steeele [2] and
called by entire functions with rapidly oscillating coefficients. Properties of such functions
were studied also in [3]-[5]. In [6] entire functions were considered with rapidly oscillating
coeflicients of two variables.

If a sequence (p,,) of positive integers satisfies condition (2) with ¢ = 2, then the sequences
(cos 2mp,t) and (sin 27p,t) are multiplicative systems (see for example [7]). Properties of
analytic functions, represented by power series of the form f;(z) = > > (X, (t) +iY,(t))cn2"

n=0
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or their bivariate analogies, in the case when (X, (t)) and (Y,,(¢)) are multiplicative systems
were investigated in [8]-[13].
Some applications the Baire categories to the theory of analytic functions are given in

[14]-18], [5]-

2. Auxiliary results. In the proof of Theorem 2 the main tool is Lemma 2 given below.
We obtain Lemma 2 with the help of the following lemma of A. Zygmund [19, p. 326].

Lemma 1. Let E C [0,2n] be a set of positive measure 0, and let ¢ > 1 be some number.
Then for each A\ > 1 there exists a positive integer hy = ho(\) such that for every tri-
gonometric series P(t) = Y o (a, cospyt + b, sinp,t) with a,,b, € R, p, € N, p;;% > q,
po > ho and "> (a2 4+ b2) < +oo we have

0 fo: 2 | 2 2 OA Eoo: 2 | 2
< P < .

Lemma 2. Let E C [0, 27| be a set of positive measure §, f a transcendental entire function
of the form (1), (p,) a sequence of positive integers with Hadamard gaps, and 0 € R a fixed
number. Then for the function given by (3) we have

lim fE |ft<§ew)’2dt _
r—+00 Sf(r)

5. (4)

Proof. Let E C [0, 27] be a set of positive measure 4, (p,) a sequence of positive integers with
Hadamard gaps, and ¢ > 1 some number such that (2) holds. We fix an arbitrary number
A > 1 and let hy = ho(A) be a positive integer whose existence follows from Lemma 1. Put
no = max{ny, ho}.

We consider a transcendental entire function f of the form (1) and set

no—1 [e’e) no—1 o
p(z) = Z 2", g(z) = Z 2", p(z) = Z ePrle, 2" gi(2) = Z ePrle, 2.
n=0 n=ng n=0 n=no

Then we put 7, = argc,, and let P!(z) and P?(z) be the real and imaginary parts of the
function ¢(z), respectively. Then, as easily verified,

Pl(re?) = Z (len|r™ cos(0 + ) cos put — |cp|r™ sin(0 + ,,) sin p,t),

n=ng
00

P2(re') = Z (|enlr™ sin(0 4 ) cos ppt + |cn|r™ cos(8 + ;) sinpyt).

n=ng
By Lemma 1, for 7 = 1,2 we obtain

J

L o\
2 < J 10\\2 <
2S00 < [ (Plretya <

75‘3(71)7

whence it follows that

;sgz(r) < /E e (re®) [2dt < OAS2(r). (5)
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Since the entire function f is transcendental, we obtain Inr = o(In Sy(r)) (r — +00).
Hence,

(Ve > 0)(3ro(e))(Vr > 1o(e)): Sp(r) < Si(r), (6)

from which, in particular, we have
Sp(r) ~ Sy(r) (r — +00). (7)

Next, note that

OV12 74 (ret®)|2 L (ret®)|? (re®) g, (rei® (e g, (rei® _
[ istrenyza = [ latePace [ e i [ (ptre oo+ plreatre”) )

Because
27
0

/E|pt(7“ei9)|2dt S/ pe(re”)[Pdt = 252 (r)

and, by the Schwarz inequality,

[ (treatrem —l—pt(rei@)gt(rew))dt‘ <2 [ Ipfre"|lare™)ldr <
E E

27 27 % 27 ) %
< 2/ |pt(r6i9||gt(rei9)|dt <2 (/ |pt(7“ei9|2dt) (/ |gt(re“9|2dt> =47 S, (r)Sy(r),
0 0 0

we have, using (6),

/E | i(rei®) [2dt = /E ge(re®)2dt + o(S2(r))  (r = +00). (8)
From (5), (7) and (8) it follows that

Jplfire®)Pdt [y | filre®)dt

5
S< < T
N ome S2r) ot S3(r)

<O,
from which, due to the arbitrariness of A > 1, we have (4). This completes the proof of
Lemma 2. ]

3. Proof of Theorem 2. Suppose that the conditions of Theorem 2 are satisfied. For
arbitrary positive integers k, n, m we introduce the set

Dy = {t € R | filme”) < (1 %)sf(rk)}, Epn = ﬁ Dy
Since

o oo
teB < (3m)@n)(Vk>m):t € Dy, © Gm)3Fn):t € Epp & te | | Enn
m=1n=1
we have that B’ = U, U | B,y .
First, we prove that for any positive integers m and n the set E,,, ,, is of Lebesgue measure
zero. Suppose the contrary, i. e. there exist some fixed positive integers m and n such that
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the measure of the set E,,,, is not zero. Then, from the periodicity of the function f;(z) as
a function of ¢ it follows that the set E = E,,,, N [0, 27] has positive measure 0. Applying
Lemma 2, we get
lim IE|ft Tke |2dt
k—oo S;(Tk)

On the other hand, if ¢ € E, then t € Dy, for all kK > m. Therefore,

=4 9)

[ et < (1= 1) i (= m)

which contradicts the relation (9). Thus, E,,,, is a set of measure zero for all positive integers
m and n.

Next, we prove that the set E,,, is nowhere dense. Let (a,b) be an arbitrary interval
of the real line. Since the measure of the set E,,, is zero, this interval contains a point
to &€ Epmn. Then ty ¢ Dy, for some k > m, i. e.

Fulrie®)] > (1= ) 85(re).

From the continuity of the function f;(z) as a function of ¢ it follows that for all ¢ in some
neighborhood (¢, d) C (a,b) of the point ¢y the inequality

| £ (ree®)| > (1 - %)sf(rk)

holds, i. e. (¢,d) C E,, . This means that the set E,,, is nowhere dense.
Since the set B’ is a countable union of nowhere dense sets of measure zero, this set is of
first Baire category and Lebesgue measure zero. Theorem 2 is proved.

4. Proof of Theorem 1. It is well known that for any transcendental entire function f of
the form (1) in the definition of its order p; and, if 0 < p; < 400, in the definition of its
type oy we can replace My(r) with Sy(r). It is easy to see that this fact follows from the
inequalities Sy¢(r) < My(r) and

- - b 1\
My(r) <3 lealr™ =D lenl(gr) %é(ZW ) ) (Zqi> B
n=0 n=0 n=0

N

= S,(qr) (in 1) (¢>1, r>0).

Let f be an arbitrary entire function of the form (1) and of the order p; € (0, 4+00). From
what has been said it follows that there exists a positive sequence (r) increasing to +oo
such that

. lnSf(Tk)
M = (10

Consider any sequence (p,) of positive integers with Hadamard gaps and let © be
a countable and everywhere dense set in R (for example © = Q). For the function given
by (3) and every 6 € © we put

\ft(rke 9)|
By = R: lim 222 P>y
0 {t < e Se(re)  —
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By Theorem 2, each of the sets By is of measure zero and first Baire category. It is clear that
the set F' = (J,ycq By is also of measure zero and first Baire category. Therefore, to complete
the proof of Theorem 1 it suffices to show that A’ C F.

We fix some t ¢ F. For every § € © we have t ¢ By, i. e. t € By. By the definition of
the set By and the relation (10) we obtain hy (0) = oy (6 € ©). Then, since the set O is
everywhere dense and the indicator hy,(#) is a continuous function, hy,(0) = oy, i. e. t € A,
and therefore t ¢ A’. Consequently, from ¢ ¢ F' it follows that ¢ ¢ A’. This implies that
A’ C F. Theorem 1 is proved.

5. Proof of Theorem 3. Let f be an analytic function in the disk {z € C: |z| < 1},
represented by power series (1) with the radius of convergence Ry = 1. Set

o0 e 0 cn .
SEND SECERRNS S
n=0 n=0

It is easy to see that the function ¢ is analytic in the domain {z € C: |z| > 1}, and also
some point ¢ on the unit circle is a singular point of the function ¢ if and only if e~ is a
singular point of f. Moreover, by Stirling’s formula and Hadamard’s formulas given above,
g is an entire function of order p, = 1 and type o, = 1.

Let I C {z € C: |z| < 1} be the conjugate diagram of the function g, i. e. the smallest
convex compact set containing all singularities of the function ¢, and let k,(#) be the
supporting function of the set I. By the Pdlya theorem on the connection between the
conjugate diagram and the indicator diagram of an entire function of exponential type, we
have ky(—6) = hy(6). From this and from the continuity of the indicator it follows immedi-
ately the equivalence of the following assertions:

(1) there exists a point § € R such that hy(0) < 1;

(ii) hy(#) < 1 in some interval;

(ili) ky(f) < 1 in some interval;

(iv) the function ¢ can be analytically continuated through some arc of the unit circle in
some domain Gp such that Gy N {z € C: |z| < 1} # &;

(v) the function f can be analytically continuated through some arc of the unit circle in
some domain G5 such that GoN{z € C: |2| > 1} # @.

Therefore, we can conclude that the unit circle is the natural boundary for the function
f if and only if h,(f) = 1.

Let (p,) be a sequence of positive integers with Hadamard gaps, and let C' be the set of
all t € R such that the circle {z € C: |z| = 1} is the natural boundary for the function (3).
Set

n!

g1(z) = Zeip"tc—nz”, A={teR: h,0) =1}
n=0

From what has been said above it follows that C/ = A’. Then by Theorem 1 the set C” is of
the Lebesgue measure zero and first Baire category. Theorem 3 is proved.
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