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Let f(z) =
∑∞

n=0 cnz
n be an entire function of order ρf ∈ (0,+∞), let σf and hf (θ) be the

type and the indicator of the function f , respectively, let (pn) be a sequence of positive integers
with Hadamard gaps and ft(z) =

∑∞
n=0 e

ipntcnz
n, where t ∈ R. Then, for almost every t ∈ R,

the equality hft(θ) = σf holds for every θ ∈ R.

П. В. Филевич. Индикатор целых функций с сильно колеблющимися коэффициентами //
Мат. Студiї. – 2011. – Т.35, №2. – C.142–148.

Пусть f(z) =
∑∞

n=0 cnz
n — целая функция порядка ρf ∈ (0,+∞), σf и hf (θ) — соответ-

ственно тип и индикатор функции f , (pn) — лакунарная по Адамару последовательность
натуральных чисел и ft(z) =

∑∞
n=0 e

ipntcnz
n, где t ∈ R. Тогда почти наверное по t ∈ R

равенство hft(θ) = σf выполняется для всех θ ∈ R.

1. Introduction. For any transcendental entire function

f(z) =
∞∑
n=0

cnz
n (1)

let Mf (r) = max{|f(z)| : |z| = r} be the maximum modulus, and Sf (r) = (
∑∞

n=0 |cn|2r2n)
1
2

be the mean. As usual, we define the order ρf of the function f , and, in case when 0 < ρf <
+∞, its type σf and indicator hf (θ) in accordance with equalities

ρf = lim
r→+∞

ln lnMf (r)

ln r
, σf = lim

r→+∞

lnMf (r)

rρf
, hf (θ) = lim

r→+∞

ln |f(reiθ)|
rρf

.

We recall that, by the classical Hadamard formulas,

ρf = lim
n→∞

n lnn

− ln |cn|
, σf = lim

n→∞

n|cn|ρf/n

eρf
.

For a set A ⊂ R by A′ we denote its complement in R : A′ = R\A.
Let (pn) be a sequence of positive integers with Hadamard gaps, i.e. there exists a number

q > 1 such that
pn+1

pn
> q (n ∈ Z+). (2)
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Along with the entire function (1) we consider the function

ft(z) =
∞∑
n=0

eipntcnz
n, t ∈ R. (3)

Using Hadamard’s formulas, we obtain ρft = ρf , σft = σf for all t ∈ R. Furthermore,
Sft(r) = Sf (r) and, by the Parseval equality,∫ 2π

0

|ft(reiθ)|2dθ = 2πS2
f (r) (t ∈ R);

∫ 2π

0

|ft(z)|2dt = 2πS2
f (r) (z ∈ C).

On the international conference on complex analysis in memory of A. A. Gol’dberg (Lviv,
2010) in a conversation with the author A. Eremenko formulated the following question: is it
true that for an entire function of the form (3) almost everywhere by t the equality hft(θ) = σf
holds for all θ ∈ R (i. e., hft(θ) ≡ σf)?

The answer to this question is positive.

Theorem 1. Let f be an entire function of the form (1) such that ρf ∈ (0,+∞), let (pn)
be a sequence of positive integers with Hadamard gaps, and let ft be the entire function of
the form (3), and A = {t ∈ R : hft(θ) ≡ σf}. Then A′ is a set of Lebesgue measure zero and
first Baire category in R.

It is easy to show that Theorem 1 follows from

Theorem 2. Let f be a transcendental entire function of the form (1), (pn) be a sequence
of positive integers with Hadamard gaps, ft be the entire function of the form (3), θ ∈ R be
a fixed number, (rk) be a sequence increasing to +∞, and

B =

{
t ∈ R : lim

k→∞

|ft(rkeiθ)|
Sf (rk)

≥ 1

}
.

Then B′ is a set of Lebesgue measure zero and first Baire category in R.

Using Theorem 1 and the Pólya theorem on the connection between the conjugate di-
agram and the indicator diagram of an entire function of exponential type (see for example
[1, p. 114]), we prove the following statement.

Theorem 3. Let f be an analytic function in the disk {z ∈ C : |z| < 1}, represented by power
series (1) with the radius of convergence Rf = 1, let (pn) be a sequence of positive integers
with Hadamard gaps, and let C be the set of all t ∈ R such that the circle {z ∈ C : |z| = 1}
is the natural boundary for the function (3). Then C ′ is a set of Lebesgue measure zero and
first Baire category in R.

Note that the entire functions of the form (3) was introduced by J. M. Steeele [2] and
called by entire functions with rapidly oscillating coefficients. Properties of such functions
were studied also in [3]–[5]. In [6] entire functions were considered with rapidly oscillating
coefficients of two variables.

If a sequence (pn) of positive integers satisfies condition (2) with q = 2, then the sequences
(cos 2πpnt) and (sin 2πpnt) are multiplicative systems (see for example [7]). Properties of
analytic functions, represented by power series of the form ft(z) =

∑∞
n=0(Xn(t)+ iYn(t))cnz

n
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or their bivariate analogies, in the case when (Xn(t)) and (Yn(t)) are multiplicative systems
were investigated in [8]–[13].

Some applications the Baire categories to the theory of analytic functions are given in
[14]–[18], [5].

2. Auxiliary results. In the proof of Theorem 2 the main tool is Lemma 2 given below.
We obtain Lemma 2 with the help of the following lemma of A. Zygmund [19, p. 326].

Lemma 1. Let E ⊂ [0, 2π] be a set of positive measure δ, and let q > 1 be some number.
Then for each λ > 1 there exists a positive integer h0 = h0(λ) such that for every tri-
gonometric series P (t) =

∑∞
n=0(an cos pnt + bn sin pnt) with an, bn ∈ R, pn ∈ N, pn+1

pn
> q,

p0 ≥ h0 and
∑∞

n=0(a2
n + b2

n) < +∞ we have

δ

2λ

∞∑
n=0

(a2
n + b2

n) ≤
∫
E

P 2(t)dt ≤ δλ

2

∞∑
n=0

(a2
n + b2

n).

Lemma 2. Let E ⊂ [0, 2π] be a set of positive measure δ, f a transcendental entire function
of the form (1), (pn) a sequence of positive integers with Hadamard gaps, and θ ∈ R a fixed
number. Then for the function given by (3) we have

lim
r→+∞

∫
E
|ft(reiθ)|2dt
S2
f (r)

= δ. (4)

Proof. Let E ⊂ [0, 2π] be a set of positive measure δ, (pn) a sequence of positive integers with
Hadamard gaps, and q > 1 some number such that (2) holds. We fix an arbitrary number
λ > 1 and let h0 = h0(λ) be a positive integer whose existence follows from Lemma 1. Put
n0 = max{n1, h0}.

We consider a transcendental entire function f of the form (1) and set

p(z) =

n0−1∑
n=0

cnz
n, g(z) =

∞∑
n=n0

cnz
n, pt(z) =

n0−1∑
n=0

eipntcnz
n, gt(z) =

∞∑
n=n0

eipntcnz
n.

Then we put γn = arg cn, and let P 1
t (z) and P 2

t (z) be the real and imaginary parts of the
function gt(z), respectively. Then, as easily verified,

P 1
t (reiθ) =

∞∑
n=n0

(|cn|rn cos(θ + γn) cos pnt− |cn|rn sin(θ + γn) sin pnt),

P 2
t (reiθ) =

∞∑
n=n0

(|cn|rn sin(θ + γn) cos pnt+ |cn|rn cos(θ + γn) sin pnt).

By Lemma 1, for j = 1, 2 we obtain

δ

2λ
S2
g (r) ≤

∫
E

(P j
t (reiθ))2dt ≤ δλ

2
S2
g (r),

whence it follows that
δ

λ
S2
g (r) ≤

∫
E

|gt(reiθ)|2dt ≤ δλS2
g (r). (5)
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Since the entire function f is transcendental, we obtain ln r = o(lnSf (r)) (r → +∞).
Hence,

(∀ε > 0)(∃r0(ε))(∀r ≥ r0(ε)) : Sp(r) ≤ Sεf (r), (6)

from which, in particular, we have

Sf (r) ∼ Sg(r) (r → +∞). (7)

Next, note that∫
E

|ft(reiθ)|2dt =

∫
E

|gt(reiθ)|2dt+

∫
E

|pt(reiθ)|2dt+

∫
E

(
pt(re

iθ)gt(reiθ) + pt(reiθ)gt(re
iθ)
)
dt.

Because ∫
E

|pt(reiθ)|2dt ≤
∫ 2π

0

|pt(reiθ)|2dt = 2πS2
g (r)

and, by the Schwarz inequality,∣∣∣∣∫
E

(
pt(re

iθ)gt(reiθ) + pt(reiθ)gt(re
iθ)
)
dt

∣∣∣∣ ≤ 2

∫
E

|pt(reiθ||gt(reiθ)|dt ≤

≤ 2

∫ 2π

0

|pt(reiθ||gt(reiθ)|dt ≤ 2

(∫ 2π

0

|pt(reiθ|2dt
) 1

2
(∫ 2π

0

|gt(reiθ|2dt
) 1

2

= 4πSp(r)Sg(r),

we have, using (6),∫
E

|ft(reiθ)|2dt =

∫
E

|gt(reiθ)|2dt+ o(S2
f (r)) (r → +∞). (8)

From (5), (7) and (8) it follows that

δ

λ
≤ lim

r→+∞

∫
E
|ft(reiθ)|2dt
S2
f (r)

≤ lim
r→+∞

∫
E
|ft(reiθ)|2dt
S2
f (r)

≤ δλ,

from which, due to the arbitrariness of λ > 1, we have (4). This completes the proof of
Lemma 2.

3. Proof of Theorem 2. Suppose that the conditions of Theorem 2 are satisfied. For
arbitrary positive integers k, n, m we introduce the set

Dk,n =
{
t ∈ R : |ft(rkeiθ)| ≤

(
1− 1

n

)
Sf (rk)

}
, Em,n =

∞⋂
k=m

Dk,n.

Since

t ∈ B′ ⇔ (∃m)(∃n)(∀k ≥ m) : t ∈ Dk,n ⇔ (∃m)(∃n) : t ∈ Em,n ⇔ t ∈
∞⋃
m=1

∞⋃
n=1

Em,n,

we have that B′ = ∪∞m=1 ∪∞n=1 Em,n.
First, we prove that for any positive integers m and n the set Em,n is of Lebesgue measure

zero. Suppose the contrary, i. e. there exist some fixed positive integers m and n such that
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the measure of the set Em,n is not zero. Then, from the periodicity of the function ft(z) as
a function of t it follows that the set E = Em,n ∩ [0, 2π] has positive measure δ. Applying
Lemma 2, we get

lim
k→∞

∫
E
|ft(rkeiθ)|2dt
S2
f (rk)

= δ. (9)

On the other hand, if t ∈ E, then t ∈ Dk,n for all k ≥ m. Therefore,∫
E

|ft(rkeiθ)|2dt ≤ δ
(

1− 1

n

)2

S2
f (rk) (k ≥ m),

which contradicts the relation (9). Thus, Em,n is a set of measure zero for all positive integers
m and n.

Next, we prove that the set Em,n is nowhere dense. Let (a, b) be an arbitrary interval
of the real line. Since the measure of the set Em,n is zero, this interval contains a point
t0 /∈ Em,n. Then t0 /∈ Dk,n for some k ≥ m, i. e.∣∣ft0(rkeiθ)∣∣ > (1− 1

n

)
Sf (rk).

From the continuity of the function ft(z) as a function of t it follows that for all t in some
neighborhood (c, d) ⊂ (a, b) of the point t0 the inequality∣∣ft(rkeiθ)∣∣ > (1− 1

n

)
Sf (rk)

holds, i. e. (c, d) ⊂ E ′m,n. This means that the set Em,n is nowhere dense.
Since the set B′ is a countable union of nowhere dense sets of measure zero, this set is of

first Baire category and Lebesgue measure zero. Theorem 2 is proved.

4. Proof of Theorem 1. It is well known that for any transcendental entire function f of
the form (1) in the definition of its order ρf and, if 0 < ρf < +∞, in the definition of its
type σf we can replace Mf (r) with Sf (r). It is easy to see that this fact follows from the
inequalities Sf (r) ≤Mf (r) and

Mf (r) ≤
∞∑
n=0

|cn|rn =
∞∑
n=0

|cn|(qr)n
1

qn
≤

(
∞∑
n=0

|cn|2(qr)2n

) 1
2
(
∞∑
n=0

1

q2n

) 1
2

=

= Sf (qr)

(
q2

q2 − 1

) 1
2

(q > 1, r ≥ 0).

Let f be an arbitrary entire function of the form (1) and of the order ρf ∈ (0,+∞). From
what has been said it follows that there exists a positive sequence (rk) increasing to +∞
such that

lim
k→∞

lnSf (rk)

r
ρf
k

= σf . (10)

Consider any sequence (pn) of positive integers with Hadamard gaps and let Θ be
a countable and everywhere dense set in R (for example Θ = Q). For the function given
by (3) and every θ ∈ Θ we put

Bθ =

{
t ∈ R : lim

k→∞

|ft(rkeiθ)|
Sf (rk)

≥ 1

}
.
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By Theorem 2, each of the sets B′θ is of measure zero and first Baire category. It is clear that
the set F =

⋃
θ∈ΘB

′
θ is also of measure zero and first Baire category. Therefore, to complete

the proof of Theorem 1 it suffices to show that A′ ⊂ F .
We fix some t /∈ F . For every θ ∈ Θ we have t /∈ B′θ, i. e. t ∈ Bθ. By the definition of

the set Bθ and the relation (10) we obtain hft(θ) = σf (θ ∈ Θ). Then, since the set Θ is
everywhere dense and the indicator hft(θ) is a continuous function, hft(θ) ≡ σf , i. e. t ∈ A,
and therefore t /∈ A′. Consequently, from t /∈ F it follows that t /∈ A′. This implies that
A′ ⊂ F . Theorem 1 is proved.

5. Proof of Theorem 3. Let f be an analytic function in the disk {z ∈ C : |z| < 1},
represented by power series (1) with the radius of convergence Rf = 1. Set

ϕ(z) =
∞∑
n=0

cn
zn+1

, g(z) =
∞∑
n=0

cn
n!
zn.

It is easy to see that the function ϕ is analytic in the domain {z ∈ C : |z| > 1}, and also
some point eiγ on the unit circle is a singular point of the function ϕ if and only if e−iγ is a
singular point of f . Moreover, by Stirling’s formula and Hadamard’s formulas given above,
g is an entire function of order ρg = 1 and type σg = 1.

Let I ⊂ {z ∈ C : |z| ≤ 1} be the conjugate diagram of the function g, i. e. the smallest
convex compact set containing all singularities of the function ϕ, and let kg(θ) be the
supporting function of the set I. By the Pólya theorem on the connection between the
conjugate diagram and the indicator diagram of an entire function of exponential type, we
have kg(−θ) ≡ hg(θ). From this and from the continuity of the indicator it follows immedi-
ately the equivalence of the following assertions:

(i) there exists a point θ ∈ R such that hg(θ) < 1;
(ii) hg(θ) < 1 in some interval;
(iii) kg(θ) < 1 in some interval;
(iv) the function ϕ can be analytically continuated through some arc of the unit circle in

some domain G1 such that G1 ∩ {z ∈ C : |z| < 1} 6= ∅;
(v) the function f can be analytically continuated through some arc of the unit circle in

some domain G2 such that G2 ∩ {z ∈ C : |z| > 1} 6= ∅.
Therefore, we can conclude that the unit circle is the natural boundary for the function

f if and only if hg(θ) ≡ 1.
Let (pn) be a sequence of positive integers with Hadamard gaps, and let C be the set of

all t ∈ R such that the circle {z ∈ C : |z| = 1} is the natural boundary for the function (3).
Set

gt(z) =
∞∑
n=0

eipnt
cn
n!
zn, A = {t ∈ R : hgt(θ) ≡ 1}.

From what has been said above it follows that C ′ = A′. Then by Theorem 1 the set C ′ is of
the Lebesgue measure zero and first Baire category. Theorem 3 is proved.
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